

Classic algorithms in Python

Warning

This is very much a work in progress.

\[\left(\frac{n}{k}\right) = \frac{n!}{k!(n-k)!}\]

Contents:

	Disjoint Set Union

	Two-dimensional lines

Indices and tables

	Index

	Module Index

	Search Page

Disjoint Set Union

	
class src.dsu.DisjointSetUnion(xs=None)[source]

	Construct a disjoint set union (DSU)

This data structure tracks a set of elements partitioned into a
number of disjoint (i.e. non-overlapping) subsets. It provides
almost constant-time operations to:

	Add a new element to the set

	Join two sets into one (union)

	Find if two elements are in the same set (find)

Alternative names for this data structure:

	Disjoint-set data structure

	Union-find data structure

	Merge-find set

	
__init__(xs=None)[source]

	Create an empty or a pre-populated disjoint set union (DSU)

	Parameters

	xs – a list of elements. If None, then an empty DSU is
created. Otherwise, each element is treated as its
own set.

	
find(key, w=0)[source]

	Find the set of the provided key

This method returns the same key for those keys that belong to
the same set. Internally, the keys from the same set make up a
tree whose root holds the key that represents the whole set.

When you call find with a specific key, there are two edge
cases:

1. The provided key is, in fact, the root of the tree. If so,
it is immediately returned. 2. The provided key is a leaf of
some very long path to the root of the tree. In this case, the
entire path to the root must be traversed.

To avoid having very long paths, the second case also performs
path compression after traversing the path to the root.

	Parameters

	
	key – the key whose set should be found

	w – the weight of the subtree of the key

	
union(key1, key2)[source]

	Combine the sets that contain the two given keys into one

If both keys belong to the same set, the method does not
achieve much. However, path compression could still change
the underlying data structure.

	Parameters

	
	key1 – the key contained in the first set

	key2 – the key contained in the second set

Two-dimensional lines

	
src.geometry.line2d.standard_line(x0, y0, x1, y1)[source]

	Computes the coefficients of Ax + By + C = 0 given two plane points.

	Returns

	a tuple (A, B, C); it is (0, 0, 0) if both points are the same

Index

 _
 | D
 | F
 | S
 | U

_

 	
 	__init__() (src.dsu.DisjointSetUnion method)

D

 	
 	DisjointSetUnion (class in src.dsu)

F

 	
 	find() (src.dsu.DisjointSetUnion method)

S

 	
 	standard_line() (in module src.geometry.line2d)

U

 	
 	union() (src.dsu.DisjointSetUnion method)

 All modules for which code is available

	src.dsu

	src.geometry.line2d

 Source code for src.dsu

[docs]class DisjointSetUnion:
 """
 Construct a disjoint set union (DSU)

 This data structure tracks a set of elements partitioned into a
 number of *disjoint* (i.e. non-overlapping) subsets. It provides
 almost constant-time operations to:

 1. Add a new element to the set
 2. Join two sets into one (union)
 3. Find if two elements are in the same set (find)

 Alternative names for this data structure:

 1. Disjoint-set data structure
 2. Union-find data structure
 3. Merge-find set
 """

[docs] def __init__(self, xs=None):
 """
 Create an empty or a pre-populated disjoint set union (DSU)

 :param xs: a list of elements. If None, then an empty DSU is
 created. Otherwise, each element is treated as its
 own set.
 """
 self.xs = {x: x for x in xs} if xs else {}
 self.ws = {x: 1 for x in xs} if xs else {}

 self.count = len(xs) if xs else 0

 def __iter__(self):
 return iter(self.xs)

 def __getitem__(self, key):
 return self.find(key)

 def __setitem__(self, key, val):
 """
 Add a new element to the disjoint set union (DSU)

 The item is added initially as its own set.

 :param key: the item to add to the DSU
 :param val: the value, must be equal to the provided key
 """

 if key is not val:
 raise RuntimeError("key and val must be the same")

 self.xs[key] = key
 self.ws[key] = 1

[docs] def find(self, key, w=0):
 """
 Find the set of the provided key

 This method returns the same key for those keys that belong to
 the same set. Internally, the keys from the same set make up a
 tree whose root holds the key that represents the whole set.

 When you call find with a specific key, there are two edge
 cases:

 1. The provided key is, in fact, the root of the tree. If so,
 it is immediately returned. 2. The provided key is a leaf of
 some very long path to the root of the tree. In this case, the
 entire path to the root must be traversed.

 To avoid having very long paths, the second case also performs
 path compression after traversing the path to the root.

 :param key: the key whose set should be found
 :param w: the weight of the subtree of the key
 """

 if self.xs[key] == key:
 self.ws[key] += w

 return key

 self.ws[self.xs[key]] -= self.ws[key]
 self.xs[key] = self.find(self.xs[key], self.ws[key])

 return self.xs[key]

[docs] def union(self, key1, key2):
 """
 Combine the sets that contain the two given keys into one

 If both keys belong to the same set, the method does not
 achieve much. However, path compression could still change
 the underlying data structure.

 :param key1: the key contained in the first set
 :param key2: the key contained in the second set
 """
 val1 = self.find(key1)
 val2 = self.find(key2)

 if val1 == val2:
 return

 if self.ws[val1] < self.ws[val2]:
 val1, val2 = val2, val1

 self.xs[val1] = val2
 self.ws[val2] += self.ws[val1]

 Source code for src.geometry.line2d

from src.geometry.point2d import Point2D

def dot_product(ps, qs, sum=sum):
 '''
 Computes the dot product of two vectors.

 :ps: the list of coordinates of the first vector
 :qs: the list of coordinates of the second vector
 :sum: consider using math.fsum if you need to sum over many floats
 :return: a single scalar, the dot product
 '''

 assert len(ps) == len(qs), 'arguments must have the same length'

 return sum(p * q for p, q in zip(ps, qs))

[docs]def standard_line(x0, y0, x1, y1):
 '''
 Computes the coefficients of Ax + By + C = 0 given two plane points.

 :return: a tuple (A, B, C); it is (0, 0, 0) if both points are the same
 '''

 return y0 - y1, - (x0 - x1), x0 * y1 - x1 * y0

class Line2D:

 def __init__(self, point0: Point2D, point1: Point2D):
 '''
 Construct a line using two *distinct* points

 :raises RuntimeError: if provided points are the same
 '''

 x0, y0 = point0
 x1, y1 = point1

 self.A, self.B, self.C = standard_line(x0, y0, x1, y1)

 if self.A == 0 and self.B == 0 and self.C == 0:
 # TODO: use custom errors?
 raise RuntimeError(
 'Cannot construct line: points are the same'
)

 def __iter__(self):
 return self

 def __next__(self):

 if self.i == 4:
 self.i = 0

 raise StopIteration

 coef = self.coefs[self.i]

 self.i += 1
 return coef

def compute_line_intersection_2d(line0: Line2D, line1: Line2D):
 A0, B0, C0 = line0
 A1, B1, C1 = line1

 x = A1 * B0 - A0 * B1

 if x == 0:
 # line0 and line1 do not intersect
 # they are either the same or parallel
 return None

 return Point2D((B0 * C1 - B1 * C0) / x, (A1 * C0 - A0 * C1) / x)

 nav.xhtml

 Table of Contents

 		
 Classic algorithms in Python

 		
 Disjoint Set Union

 		
 Two-dimensional lines

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

